Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(3S,8S)-3,8-Dimethyl-1,6-dioxa-4,9-diaza$5 \lambda^{5}$-phosphaspiro[4.4]nonane-2,7-dione

Lin Yu, Zhao Liu, Hua Fang and Yu-Fen Zhao*

The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: yfzhao@xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.068$
$w R$ factor $=0.198$
Data-to-parameter ratio $=9.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the the title compound, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$, the P atom and the attached H atom lie on a crystallographic twofold axis. The molecule adopts a slightly distorted trigonal bipyramidal structure. The crystal structure involves intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), was synthesized for a study of its biochemical activity. According to experimental evidence, this compound shows 63.6% rate inhibition to tyrosinase, an important enzyme in the formation of melanin which is widely distributed in microorganisms, animals and plants (Seo et al., 2003). This type of compound and its analogs may afford new potent and efficient inhibitors of tyrosinase.

(I)

X-ray structural analysis revealed that the P atom and its attached H atom lie on a crystallographic twofold axis. The molecule adopts a slightly distorted trigonal bipyramidal structure, with the two O atoms in apical positions and the N atoms and H in equatorial positions, as shown in Fig. 1. The major distortion from the ideal angle of 120° occurs for $\mathrm{N} 1-$ $\mathrm{P}-\mathrm{N} 1^{\mathrm{i}}$, which is $127.6(4)^{\circ}$ (symmetry code as in Table 1). This type of distortion is even more pronounced in the related compound, 1,6-dioxa-4,9-diaza-5-phosphaspiro[4.4]nonane, (II) (Meunier et al., 1978), where the $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle is 130.8°.

Figure 1
ORTEPII (Johnson, 1976) plot of the molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) $-x,-y, \frac{1}{2}+z$.]

Received 25 November 2004 Accepted 23 December 2004 Online 8 January 2005

The bond lengths and angles in (I) compares favourably with those in (II), which differs from (I) in that the rings are not substituted by methyl and keto groups. The crystal structure involves intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2).

Experimental

Following a general procedure (Garrigues et al., 1977), phosphorus trichloride (10 mmol) was added to stirred l -alanine (20 mmol) in glycol dimethyl ether under a nitrogen atmosphere at room temperature. Triethylamine $(4.2 \mathrm{ml})$ was then added dropwise to the solution at 263 K to induce the reaction; the solution was then stirred for two more hours. The solvent was removed under reduced pressure by rotary evaporation and the residue was washed rapidly with a sufficient quantity of water. The crude product was filtered off and recrystallized from acetone and petroleum ether (1:1).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$
$M_{r}=206.14$
Orthorhombic, C222
$a=6.1138$ (12) £
$b=7.6933$ (15) \AA
$c=19.824$ (4) \AA
$V=932.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.468 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.959, T_{\text {max }}=0.978$
570 measured reflections
570 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.198$
$S=1.07$
570 reflections
62 parameters
H atoms treated by a mixture of independent and constrained refinement
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=8-15^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Chunk, colorless
$0.15 \times 0.10 \times 0.08 \mathrm{~mm}$

430 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-7 \rightarrow 0$
$k=0 \rightarrow 9$
$l=-24 \rightarrow 0$
3 standard reflections frequency: 60 min intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1249 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.55 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.010 (4)
Absolute structure: Flack (1983), 0 Friedel pairs
Flack parameter $=0.05(6)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{P}-\mathrm{N} 1$	$1.622(5)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.206(9)$
$\mathrm{P}-\mathrm{O} 1$	$1.750(5)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.455(9)$
$\mathrm{P}-\mathrm{H}$	$1.49(9)$	$\mathrm{C} 3-\mathrm{C} 1$	$1.511(9)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.310(8)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.520(9)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{P}-\mathrm{N} 1$	$127.6(4)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 1$	$113.1(6)$
$\mathrm{N} 1-\mathrm{P}-\mathrm{O} 1^{\mathrm{i}}$	$90.4(2)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$103.1(5)$
$\mathrm{N} 1-\mathrm{P}-\mathrm{O} 1$	$89.0(3)$	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	$111.6(6)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{P}-\mathrm{O} 1$	$178.6(4)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$123.6(6)$
$\mathrm{N} 1-\mathrm{P}-\mathrm{H}$	$116.2(2)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$123.8(6)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{P}$	$115.6(4)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$112.6(6)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{P}$	$119.5(4)$		

Symmetry code: (i) $2-x, y, \frac{1}{2}-z$.

Figure 2
A view, approximately along the b axis, of the hydrogen bonds (dashed lines).

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O}^{2 \mathrm{ii}}$	0.86	2.21	$3.017(7)$	155

Symmetry code: (ii) $1+x, y, z$.
The H atom attached to P was located and refined subject to the restraint $\mathrm{P}-\mathrm{H}=1.50(10) \AA . U_{\text {iso }}(\mathrm{H})$ was set equal to $1.2 U_{\text {eq }}(\mathrm{P})$. The other H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.98$ or $0.96 \AA$ for tertiary and methyl H atoms, respectively, and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and were included in the refinement in the riding-model approximation. $U_{\text {iso }}(\mathrm{H})$ values were set equal to $x U_{\text {eq }}($ carrier atom $)$, where x $=1.5$ for methyl and $x=1.2$ for the other H atoms. The absolute configuration of the compound was assigned by reference to an unchanging chiral centre in the synthetic procedure, and is confirmed by refinement of the Flack (1983) parameter.

Data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 software; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Fujian Foundation of Science and Technology (No. 2001F008) and the Fujian Key Foundation of Science and Technology (No. 2002H011) for supporting this work. We also thank Mr Z. B. Wei and Dr R. B. Huang for technical assistance.

References

Enraf-Nonius (1988). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Garrigues, B., Munoz, A., Koenig, M. \& Sanchez, M. (1977). Tetrahedron, 33, 635-643.
Harms, K. (1997). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Meunier, P. F., Day, R. O. \& Devillers, J. R. (1978). Inorg. Chem. 17, 3270-3276.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Seo, S. Y., Sharma, V. K. \& Sharma, N. (2003). J. Agric. Food Chem. 51, $2837-$ 2853.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

